If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-15x2 + -11x + 23) + -1[(-7x2 + -11x + 7) + -1(11x2 + -13x + -5)] = 0 Reorder the terms: (23 + -11x + -15x2) + -1[(-7x2 + -11x + 7) + -1(11x2 + -13x + -5)] = 0 Remove parenthesis around (23 + -11x + -15x2) 23 + -11x + -15x2 + -1[(-7x2 + -11x + 7) + -1(11x2 + -13x + -5)] = 0 Reorder the terms: 23 + -11x + -15x2 + -1[(7 + -11x + -7x2) + -1(11x2 + -13x + -5)] = 0 Remove parenthesis around (7 + -11x + -7x2) 23 + -11x + -15x2 + -1[7 + -11x + -7x2 + -1(11x2 + -13x + -5)] = 0 Reorder the terms: 23 + -11x + -15x2 + -1[7 + -11x + -7x2 + -1(-5 + -13x + 11x2)] = 0 23 + -11x + -15x2 + -1[7 + -11x + -7x2 + (-5 * -1 + -13x * -1 + 11x2 * -1)] = 0 23 + -11x + -15x2 + -1[7 + -11x + -7x2 + (5 + 13x + -11x2)] = 0 Reorder the terms: 23 + -11x + -15x2 + -1[7 + 5 + -11x + 13x + -7x2 + -11x2] = 0 Combine like terms: 7 + 5 = 12 23 + -11x + -15x2 + -1[12 + -11x + 13x + -7x2 + -11x2] = 0 Combine like terms: -11x + 13x = 2x 23 + -11x + -15x2 + -1[12 + 2x + -7x2 + -11x2] = 0 Combine like terms: -7x2 + -11x2 = -18x2 23 + -11x + -15x2 + -1[12 + 2x + -18x2] = 0 23 + -11x + -15x2 + [12 * -1 + 2x * -1 + -18x2 * -1] = 0 23 + -11x + -15x2 + [-12 + -2x + 18x2] = 0 Reorder the terms: 23 + -12 + -11x + -2x + -15x2 + 18x2 = 0 Combine like terms: 23 + -12 = 11 11 + -11x + -2x + -15x2 + 18x2 = 0 Combine like terms: -11x + -2x = -13x 11 + -13x + -15x2 + 18x2 = 0 Combine like terms: -15x2 + 18x2 = 3x2 11 + -13x + 3x2 = 0 Solving 11 + -13x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 3.666666667 + -4.333333333x + x2 = 0 Move the constant term to the right: Add '-3.666666667' to each side of the equation. 3.666666667 + -4.333333333x + -3.666666667 + x2 = 0 + -3.666666667 Reorder the terms: 3.666666667 + -3.666666667 + -4.333333333x + x2 = 0 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + -4.333333333x + x2 = 0 + -3.666666667 -4.333333333x + x2 = 0 + -3.666666667 Combine like terms: 0 + -3.666666667 = -3.666666667 -4.333333333x + x2 = -3.666666667 The x term is -4.333333333x. Take half its coefficient (-2.166666667). Square it (4.694444446) and add it to both sides. Add '4.694444446' to each side of the equation. -4.333333333x + 4.694444446 + x2 = -3.666666667 + 4.694444446 Reorder the terms: 4.694444446 + -4.333333333x + x2 = -3.666666667 + 4.694444446 Combine like terms: -3.666666667 + 4.694444446 = 1.027777779 4.694444446 + -4.333333333x + x2 = 1.027777779 Factor a perfect square on the left side: (x + -2.166666667)(x + -2.166666667) = 1.027777779 Calculate the square root of the right side: 1.013793756 Break this problem into two subproblems by setting (x + -2.166666667) equal to 1.013793756 and -1.013793756.Subproblem 1
x + -2.166666667 = 1.013793756 Simplifying x + -2.166666667 = 1.013793756 Reorder the terms: -2.166666667 + x = 1.013793756 Solving -2.166666667 + x = 1.013793756 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.166666667' to each side of the equation. -2.166666667 + 2.166666667 + x = 1.013793756 + 2.166666667 Combine like terms: -2.166666667 + 2.166666667 = 0.000000000 0.000000000 + x = 1.013793756 + 2.166666667 x = 1.013793756 + 2.166666667 Combine like terms: 1.013793756 + 2.166666667 = 3.180460423 x = 3.180460423 Simplifying x = 3.180460423Subproblem 2
x + -2.166666667 = -1.013793756 Simplifying x + -2.166666667 = -1.013793756 Reorder the terms: -2.166666667 + x = -1.013793756 Solving -2.166666667 + x = -1.013793756 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2.166666667' to each side of the equation. -2.166666667 + 2.166666667 + x = -1.013793756 + 2.166666667 Combine like terms: -2.166666667 + 2.166666667 = 0.000000000 0.000000000 + x = -1.013793756 + 2.166666667 x = -1.013793756 + 2.166666667 Combine like terms: -1.013793756 + 2.166666667 = 1.152872911 x = 1.152872911 Simplifying x = 1.152872911Solution
The solution to the problem is based on the solutions from the subproblems. x = {3.180460423, 1.152872911}
| [(3y^2+11y+4)-(-7y^2+8y+4)]-(6y^2-10y+12)= | | 2-3y=9 | | 6B+15=93 | | (10x^5-x^4+2x^2+3x)-(-3x^4-6x^3+3x^2-7x)= | | 1-3y=9 | | 3x=(1.20+x) | | (x^2-7x+8)-(8x^2-4x+3)= | | y=-9(-5) | | y=-9(-2) | | (9a^2+a-5)-(4a^2+9a-9)= | | -2y-19=4y+17 | | y=-9(-4) | | y=-9(4) | | (7a^2+2a+4)-(a^2-5a-9)= | | y=-9(2) | | 5(x-9)-7=-52 | | (8x^5-10x^2+3x)-(10x^5+7x^2-7)= | | 7x+4+4=(7x+4)2 | | (7x+4)=7 | | (-12u^6+20u^3)+(-2u^9+16u^6)= | | 3x+5+4=7x+4 | | 2x-6=x+8 | | 6(7x-3)+4=42x-14 | | 3z-9=4z-5 | | (-5b^7-2b^6)+(18b^5+15b^7)= | | 6-(4n+5)=1-5n | | (-12u^4+u^5)+(u^5+5u^4)= | | 7=0.2x+5/2 | | x+1=-3x+25 | | 3(4x+8)=-37+25 | | y=(1/2)(3)-1 | | 16x^2-64x-36=0 |